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1 Introduction

Friedmann cosmology is a catch-all term for cosmology centered around the Friedmann equations,
which are solutions to Einstein’s field equation for the Robertson-Walker metric. The Robertson-
Walker metric is, of course, the most general metric for a spacetime satisfying the cosmological
principle, i.e. that it be homogeneous and isotropic in space. For a derivation of the Robertson-
Walker metric, see my note about it. Once the Friedmann equations are derived from the Einstein
field equation, we can explore the implications that they have on the cosmology of our universe,
whether the universe is flat, spherical or hyperbolic. We’ll then be able to see what implications
current cosmological parameters have on the cosmology of our universe, especially on the geometry
of it.

The Friedmann equations were first derived by Alexander Friedmann in 19221, which gave a
theoretical explanation for Hubble’s law even before there was a Hubble’s law. Hubble’s law wasn’t
discovered until 1929, so of course it wasn’t called this in Friedmann’s paper, but he did present
a solution for an expanding universe as a possibility, and gave an equation for the velocity of the
expansion. In fact, Einstein had already considered the possibility of an expanding universe, but
rejected it as unphysical. He then “butchered” (as far as he was concerned) his own field equation in
19172 to include something now termed the cosmological constant Λ to prevent such an expansion.
After it was experimentally confirmed by Hubble, Einstein was very disappointed that he didn’t
stick by his equation in it’s original form, because he would have predicted the expansion of the
universe a priori. (This is distinct from what Friedmann did, which was present an expanding
unvierse as a possible solution. Einstein also would have done this a few years before Friedmann

1A. Friedmann, “Über die Krümmung des Raumes,” Z. Phys., 10, 377 (1922).
2A. Einstein, “Kosmologische Betrachtungen zur allgemeinen Relativitaetstheorie,” Sitzber. K. Preuss. Akad.

Wiss., 1, 142 (1917).
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published his 1922 paper.) Of course, it turns out now that to explain dark energy, we might need
the cosmological constant. But more on this later.

There are many important parameters in cosmology, but the four most important to us are
going to be the (relative) matter density, Ωm, the (relative) dark energy density, ΩΛ, the total
(relative) energy density, Ω, and the (current) Hubble constant, H0. While the first three are
known very accurately, there is a lot of difficulty in measuring the Hubble constant, so accepted
numbers vary from 65 km s−1/Mpc to 75 km s−1/Mpc, with the Planck satellite giving a value of
67.31 km s−1/Mpc (as of the 2015 data). The majority of the discussion on cosmology will revolve
around these four quantities and how they affect various observations and the overall evolution of
our universe.

2 Derivation of the Friedmann Equations

First of all, I want to point out that there are two Friedmann equations, in the sense that these were
the two equations that Friedmann published in his 1922 papers and are generally given his name.
However, often times a third equation is lumped into the mix, replacing one of the two Friedmann
equations. This third equation is lumped in because it isn’t independent of the two Friedmann
equations; a linear combination of the two will give this third equation. But, technically, the third
equation is a consequence of conservation of energy, and is typically referred to as the continuity
equation. I will make the distinction between these three, though I will use a mixture of the three
of them interchangeably depending on which equation gives a solution to a problem more easily;
this is what you should always do in physics, anyways.

We start our derivation with the Robertson-Walker metric, given in terms of arbitrary (normal-
ized) curvature k:

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
(1)

Note that k = 1 corresponds to spherical geometry, k = 0 corresponds to flat geometry, and k = −1
corresponds to hyperbolic geometry. Also note that, in this form, I am keeping the units of distance
in my coordinate r, while keeping the scale-factor a(t) unitless. In this picture, the scale factor will
simply tell me how 1m changes from how it’s defined now, such that a(t = 0) = 1, to any time in
the past (t < 0) or any time in the future (t > 0).

The first thing we need to do is to compute all non-zero Christoffel symbols. These are, excluding
any that can be found with the symmetry Γρµν = Γρνµ:

Γtrr =
aȧ

1− kr2
Γtθθ = aȧr2 Γtφφ = aȧr2 sin2 θ

Γrrr =
kr

1− kr2
Γrrt =

ȧ

a
Γrθθ = −r(1− kr2)

Γrφφ = −r(1− kr2) sin2 θ Γθtθ =
ȧ

a
Γθrθ =

1

r

Γθφφ = − sin θ cos θ Γφtφ =
ȧ

a
Γφrφ =

1

r

Γφθφ = cot θ

(2)

A better way to get to the Einstein equations is to compute the Ricci tensor direction, bypassing
the Riemann curvature tensor, which will save us a bunch of calculations. To compute the Ricci
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tensor directly, note the following equation:

Rµν =
∂

∂xν
Γµ −

∂

∂xρ
Γρµν − ΓρµνΓρ + ΓρµσΓσνρ (3)

where I have defined a “reduced” Christoffel symbol:

Γµ = Γνµν (4)

just to make the calculations easier. The non-zero reduced Christoffel symbols will be:

Γt =
3ȧ

a
Γr =

2− kr2

r(1− kr2)
Γθ = cot θ

Γφ = 0

(5)

So, the four non-zero components of the Ricci tensor are:

Rtt = −3ä

a
Rrr =

aä+ 2ȧ2 + 2k

1− kr2

Rθθ = r2(aä+ 2ȧ2 + 2k) Rφφ = r2(aä+ 2ȧ2 + 2k) sin2 θ

(6)

Finally, the Ricci scalar, R, is just the trace of the Ricci tensor R = Rµµ:

R = 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
(7)

Now that we know all the relevant geometric objects, we can compute the stress-energy tensor
for our universe, which is the second piece of information (after the geometric piece) needed to solve
the Einstein field equation. In cosmology, we always use the stress-energy tensor of a perfect fluid,
because we consider only three sources of energy: matter, treated like a fluid of particles at rest,
radiation, treated like a fluid of ultra-relativistic particles, and dark energy, which is treated as a
fluid with extremely strange properties. The stress energy tensor, represented as a 4 × 4 matrix
||Tµν ||, for a perfect fluid is:

||Tµν || =


ρ 0 0 0

0

0 ||γijp||
0

 (8)

where ρ is the energy density (or mass density, as I always use the units c = 1), p is the pres-
sure produced by the fluid, and γij is the 3-space metric, given by the 3-space Robertson-Walker
equation:

a2(t)dσ2 = a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
(9)

Often times it’s more useful to know the stress-energy tensor with mixed contravariant and covariant
indices. In this case, we just need to raise an index on Tµν , like Tµν = gµρTρν , which will add a
negative sign on the ρ term due to g00, but free the p terms due to γijγjk = I3 (where I3 is the
3× 3 identity matrix). So, writing the matrix as a diagonal, we have:

||Tµν || = diag(−ρ, p, p, p) (10)
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This is particularly convenient because it’s very easy to compute the trace:

tr(T) = Tµµ = −ρ+ 3p (11)

where T is the symbol I’m using for the matrix representation of the stress energy tensor with
mixed indices.

Something interesting, but maybe expected, is that the three perfect fluids each have an equation
of state, much like the ideal gas law, which relates energy density ρ to pressure p, in the form:

p = wρ (12)

where w is a constant that depends solely on the type of fluid being considered: matter has w = 0,
radiation has w = 1/3, and dark energy has w = −1. The derivations for matter and radiation I
have included as an appendix, but I will justify the claim that w = −1 for dark energy latter on in
this note when we cover dark energy in depth.

As I mentioned at the start of this section, there are two equations typically referred to as the
Friedmann equations, with a third equation typically referred to as the continuity equation because
it’s derived from conservation of energy, even though the three equations are not independent of
one another. We will derive the continuity equation first because we already have the stress-energy
tensor, so the condition for conservation of energy is easy to solve:

∇µTµ0 = 0 ⇒ ∂

∂xµ
Tµ0 + ΓµµλT

λ
0 − Γλµ0T

µ
λ = 0 ⇒ −∂ρ

∂t
− 3ȧ

a
(ρ+ p) = 0

So, the continuity equation is:
∂ρ

∂t
= −3ȧ

a
(ρ+ p) (13)

If we plug in our equation of state, we can get a more useful form of the continuity equation:

ρ̇

ρ
= −3(1 + w)

ȧ

a
(14)

The continuity equation, in the above form, is fairly simple to solve by integration:

ρ = Ca−3(1+w) (15)

where C is an integration constant (or a proportionality constant, however you want to think about
it). What does this result tell us? Well, for matter, w = 0, so the energy density scales like:

ρm ∝ a−3 (16)

Does this result make sense? If we switch from our view of the scale-factor as changing the value
of 1m to our view in terms of comoving coordinates, where a(t) carries the physical units, then
clearly what the above result is saying is that matter density depends on a−3. This absolutely
makes sense, since matter density should be proportional to 1/volume.

What about for radiation? Our solution of the continuity equation tells us, for w = 1/3, that:

ρr ∝ a−4 (17)

Once again, let’s check whether this makes sense. The energy density of radiation should be
something like hν/volume. But ν = 1/λ (for c = 1), so the energy density of radiation should
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be something like h/λ∗volume. Well, as the scale factor increases, volume increases as a3 and the
wavelength is stretched as a, meaning that ρr should absolutely go like a−4.

What about for dark energy? This is our first change to take a peak at what dark energy
actually is, from the assumption that w = −1 is correct. If it is, then for dark energy:

ρΛ ∝ a0 (18)

This is a very peculiar result: the energy density of dark energy is a constant, no matter the scale of
the universe. This means that as the universe increases in size, i.e. as a grows, ρΛ remains constant
while both ρm and ρr decrease. So, while there is a fixed number of photons (or a fixed photon
energy if you’d like) and a fixed amount of matter in the universe, such that both of their densities
decrease as the size of the universe grows, it’s the energy density of dark energy that’s fixed, so the
actual amount of dark energy continuously grows as the universe gets larger and larger. This will
be a very important feature of dark energy later on, and it’s due solely to the equation of state, i.e.
the fact that w = −1 for dark energy.

Now we’re ready to derive the two Friedmann equations. Recall Einstein’s field equation:

Rµν −
1

2
gµνR = 8πTµν (19)

where I’m setting G = 1. Using our Ricci tensor, equation (6), our Ricci scalar, (7), and the
covariant stress-energy tensor given by equation (8), the 00 term of the Einstein equation is:

R00 −
1

2
g00R = 8πT00 ⇒ −3ä

a
− 1

2
∗ 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

]
(−1) = 8πρ

⇒ −3ä

a
+

3ä

a
+ 3

(
ȧ

a

)2

+
3k

a2
= 8πρ

This gives us our first Friedmann equation:(
ȧ

a

)2

=
8π

3
ρ− k

a2
(20)

The second Friedmann equation will be found using the 11 component of Einstein’s equation:

R11−
1

2
g11R = 8πT11

⇒ aä+ 2ȧ2 + 2k

1− kr2
− 1

2
∗ 6

[
ä

a
+

(
ȧ

a

)2

+
k

a2

](
a2

1− kr2

)
= 8π

(
a2

1− kr2

)
p

⇒ −2aä− ȧ2 − k = 8πa2p

This is in, basically, the form that Friedmann published the second equation in. However, we want
to modify this equation my using the first equation, to find a simplified form of the second equation
which is more commonly used. If we multiply equation (20) by 3a2, and move the k term over to
the left-hand-side, the first Friedmann equation becomes:

3ȧ2 + 3k = 8πa2ρ
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If we then multiply the 11 solution by 3 and add it to the first Friedmann equation given above,
which will allow the ±3ȧ2 and the ±3k terms to cancel from each equation, we come to the equation:

−6aä− 3ȧ2 − 3k + 3ȧ2 + 3k = 8πa2(3p) + 8πa2ρ ⇒ −6aä = 8πa2(ρ+ 3p)

Simplifying the above result, and re-writing the first Friedmann equation, equation (20), for con-
venience, the two Friedmann equations are:(

ȧ

a

)2

=
8π

3
ρ− k

a2

ä

a
= −4π

3
(ρ+ 3p)

(21)

Combining the two Friedmann equations with the continuity equation, given by equation (14),
we have the three fundamental equations of cosmology (as I call them; I don’t know if this set of
equations goes by any standardized name). Any pair from the set of these three equations will
completely describe the cosmology for a universe with a curvature k.

3 Cosmological Parameters

The first observable that we will define in our exploration of Friedmann cosmologies is the Hubble
parameter:

H(t) ≡ ȧ

a
(22)

While this was originally called the Hubble constant, at least the current-time value H(t = 0) = H0

was, it no longer makes any sense to call it a constant since it clearly varies with time, hence the
switch to the word “parameter.” As stated in the introduction, the Hubble parameter is difficult to
measure, and there isn’t really a consensus on what value it should be. While the range of accepted
values is typically between 65 km s−1/Mpc and 75 km s−1/Mpc, with the Planck satellite giving
(from the 2015 data) a value of 67.31 km s−1/Mpc, I’ve always used a different value:

H0 = 72
km s−1

Mpc
(23)

The Hubble parameter seems to be a deeply personal value, with people clinging desperately to
the value that they’ve always used, so long as it’s between the accepted bounds. Not that I’m
any better; I insist on using 72 km s−1/Mpc. The various (recent) observational values of H0 are
plotted in Figure 1, to give a sense of the variation in the measurements. For a few of the recent
measurements, the error bars don’t overlap, so the values cannot possibly be consistent.

Sometimes the Hubble parameter is defined in terms of a unitless quantity h, such that:

H0 ≡ 100h
km s−1

Mpc
(24)

I’m not a huge fan of using h, so I will avoid it. But it’s been around since the days when
physicists were divided between H0 = 50 km s−1/Mpc and H0 = 100 km s−1/Mpc, so they defined
the dimensionless quantity h and wrote out cosmological parameters in terms of h, since some
important ones are dimensionless and can’t be written in terms of H0. Since we’re fairly certain
what the value of H0 is now, there isn’t as much a need for h.
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Figure 1: Recent measurements of H0. Image credit: WikimediaCommons, author Ewen.

Now that we’ve defined the Hubble parameter, let’s discuss the interpretation: it’s very simple,

H(t) > 0 ⇒ the universe is expanding

H(t) < 0 ⇒ the universe is collapsing

H(t) ≡ 0 ⇒ the universe is static

(25)

If we take a look at the Friedmann equations, given in equation (21), we can define a new quantity,
known as the acceleration parameter:

A(t) ≡ ä

a
(26)

which has a very easy interpretation as well:

A(t) > 0 ⇒ the universe’s expansion is accelerating

A(t) < 0 ⇒ the universe’s expansion is decelerating

A(t) ≡ 0 ⇒ the universe’s expansion is constant

(27)

It might be better to describe the implications of A(t) in terms of the rate of change of the Hubble
parameter, because if a universe is collapsing, A(t) > 0 means it will collapse more slowly and more
slowly, etc., since it’s not expanding. However, in the context of the cosmology of our particular
universe, not in the context of a general Friedmann cosmology, it makes more sense to describe
A(t) as above, since our universe is observed to be expanding and we’ll be interested to know how
the rate of expansion acts over time.
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We can re-write both Friedmann equations in terms of the two new parameters:

H2(t) =
8π

3
ρ− k

a2

A(t) = −4π

3
(ρ+ 3p)

(28)

Notice A(t) is determined entirely by the equation of state of a perfect fluid. Substituting p = wρ,
the sign of A(t) is determined by:

3

(
1

3
+ w

)
ρ

If this value is greater than zero, then A(t) < 0 and the expansion is decelerating; if this value is
less than zero, then A(t) > 0 and the expansion is acceleration; and if the value is zero, then the
expansion is constant.

What does this parameter look like for our three different types of energy? Well, for matter,
for which w = 1, we get:

3

(
1

3
+ w

)
ρ = 4ρ

which is strictly positive (since mass is strictly positive), and so if a universe filled only with matter
were expanding, the expansion would be decelerating. This makes perfect sense: the gravity of
the mass would pull the universe back in on itself, slowing down the expansion until eventually it
collapsed back in on itself.

What about for radiation? Recall that w = 1/3 for radiation, so:

3

(
1

3
+ w

)
ρ = 2ρ

So, the same interpretation as for a matter universe; eventually the universe would collapse back
in on itself.

What about for dark energy? Here’s where we can really interpret dark energy, and what it’s
definition actually is. The above parameter, which determines the sign of A(t), has a zero at:

w = −1

3

Any substance with wle − 1/3 is termed dark energy. I was being misleading before when I said
dark energy had w = −1; this is technically only true if the dark energy is due to the cosmological
constant Λ, which is why I’ve labeled everything to do with dark energy by the subscript Λ.

There are other (hypothetical) forms of dark energy. One idea is that of quintessence, a scalar
field Q under the influence of a potential V (Q) such that:

w =
1
2Q̇

2 − V (Q)
1
2Q̇

2 + V (Q)

Quintessence is a dynamical form of dark energy, and w = w(t) for quintessence. This is obviously
different from the cosmological constant, for which w = −1 independent of time. Quintessence is
closely related to the scalar field that is thought to drive cosmological inflation, something called
a “slow-rolling field.” While I won’t get into inflation, it’s simple to show in the theory of inflation
that a slow-rolling field will definitely cause an accelerated expansion, thus fulfilling the definition
of dark energy as something with w ≤ −1/3 (i.e. something that produces A(t) > 0).
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Einstein formulated the cosmological constant such that his field equation read:

Rµν −
(

1

2
R− Λ

)
gµν = 8πTµν (29)

Another way to interpret Λ is to move it over to the right-hand-side and set Tµν = 0, i.e. consider
a vacuum. Then, the field equation above becomes:

Rµν −
1

2
gµνR = Λgµν

Clearly, Λ acts as a sort of vacuum energy; something that can affect the geometry of the universe
without any matter present. While the most accepted theory of cosmology, the ΛCDM theory3,
there are serious issues with the cosmological constant as the source of dark energy. The main issue
has to due with out inability to estimate Λ from a field theoretic perspective. It’s a commonly cited
result that in field theory, the estimated value of Λ is off by 120 orders of magnitude.

So, now that we understand dark energy a bit better (though we haven’t explored a physical
interpretation of what w < 0 means), we can now show why w = −1 for the cosmological constant.
Note that, from now on, I’m going back to calling it dark energy; it’s the most widely accepted idea
for the source of dark energy, and it’s just simpler to call it dark energy than “the cosmological
constant” every time I meantion it. Just be aware of the caveat.

The modified Einstein field equation, with Λ, given by equation (29), modifies the first Fried-
mann equation from equation (21) such that:(

ȧ

a

)2

+
k

a2
− Λ

3
=

8π

3
ρ

We can define the dark energy density, ρΛ, such that:

ρΛ ≡
Λ

8π
(30)

Notice that, since Λ is a constant (by definition; it’s why it’s called the cosmological constant), the
energy density ρΛ must, too, be a constant. We already saw that w = −1 defines the equation
of state for a fluid that has a constant energy density, so our previously unjustified choice is now
justified by the definition of the cosmological constant.

What else can we explore about cosmology? Something that was skipped over in the definition
of the Hubble parameter were its funky units. They are typically given as [H(t)] = km s−1/Mpc.
There’s a practical reason for this: Hubble’s law was historically given, and still interpreted, as a
relationship between speed and distance:

v = H(t)d (31)

where d = a and v = ȧ. Cosmological distances are often measured in Mpc (or hundreds of Mpc,
which is typically the distance scale that defines “cosmological distance), and the speeds of galaxies
(moving away from us, since the universe is expanding) are typically on the order of km/s, so it
just makes sense, in the context of the above equation, to use the seemingly-funky units of km
s−1/Mpc.

However, notice that since [v] = [Hd], that the units of the Hubble parameter are inverse time.
So H−1

0 should represent some time measurement. But what measurement exactly? Figure 2 plots
a(t) vs. time, and uses the plot to define H−1

0 .

3Standing for Λ-cold dark matter. Dark matter is nothing like dark energy; it’s simply a source of mass that we
haven’t been able to observe. This is most likely due to the fact that it doesn’t interact with photons, which makes it
an exotic form of matter that we haven’t seen before, since neutrinos are too light to be responsible for dark matter.
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Figure 2: Plot of a(t) vs. t, allowing for a natural interpretation of H−1
0 .

The dashed line in the figure represents a constant slope, i.e. if we assume that H0 was constant
throughout time. With ȧ0 clearly defining the slope of this line, we can say:

a(t) = ȧ0test

where test is the estimated time since the big bang. As a side note, times are often defined in
the opposite direction one is used to, because cosmology is all about look backwards in time. For
instance, in Figure 2, t0 would be set to zero by convention, and so the point at which the dashed
line intersected the time-axis would be −test. This still means there has been a time +test since
a(t) = 0, which is considered the beginning of the universe4. Simply solving the above equation for
test gives us a(t = 0)/ȧ0, or the current scale factor divided by the current expansion rate, which
gives us:

test = H−1
0 (32)

That is, the interpretation of H−1
0 is precisely the age of the universe if the acceleration of expansion

was zero for the universe; i.e. the Hubble parameter is always H(t = 0) = H0. In reality this isn’t
true, though. The modern picture of the evolution of the universe has an initial period of rapid
inflation, followed by a deceleration of that inflation, as shown in Figure 2. This means that:

test > tact (33)

i.e. we’re over-estimating the age of the universe by simply inverting H0.
How does the estimate compare to more precise computations of the age of the universe? Since

we aren’t ready to perform the actual computation of the age of the universe at this point, I’ll simply
present the value that Planck has measured. This means that we have to use H0 = 67 km s−1/Mpc,
though, since that’s the value Planck has measured. Converting to SI units, H0 = 2.171 × 10−18

s−1, which means that H−1
0 = 4.61× 1017 s, or:

test = 14.61 Gyr (34)

The precise estimates of the age of the universe, however, put it at:

tact = 13.82 Gyr (35)

So, as expected (though I didn’t justify the shape of a(t) in Figure 2; that’ll come later), test > tact.

4Though we won’t get into it, a(t) = 0 a point known as a singularity; this is the starting point of the universe in
the big bang model of evolution.
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4 Scale-Factor Evolution in Friedmann Cosmologies

Let’s take a look now at how geometry and energy density affects the evolution of the scale-factor in
Friedmann cosmologies. We’ll be performing this entire analysis from the perspective of a universe
that has H0 > 0, like our universe. Let’s recall the Friedmann equations written in terms of the
two parameters, H(t) and A(t), given by equation (28):

H2(t) =
8π

3
ρ− k

a2

A(t) = −4π

3
(ρ+ 3p)

Since H(t) is already positive, at this moment, the only way for the universe to start collapsing is
if H(t) goes to zero first. Without that, there’s no way for H(t) to change signs (since it must be
a continuous function). Recall the general equation for energy density, given by equation (15):

ρ = Ca−3(1+w)

As long as 1 + w > 0, then ρ → 0 as a → ∞; i.e. ρ decreases monotonically with a. This means
that, since H0 > 0, as a→∞

H2(t)→ − k

a2

If k = −1 or k = 0, then H(t) will never reach 0 in a finite amount of time, and so H(t) could
never flip signs, and so the universe could never collapse back on itself. That is,

Flat or hyperbolic universes, under Friedmann cosmologies, will never col-
lapse back on themselves if they have H0 > 0; the only fate for them is to
keep expanding perpetually, with H(t)→ 0 as t→∞.

What about if k = +1, though? Well, clearly H2(t) can never be negative, so at some point, as
ρ is decreasing, there must have been a time t′ when H(t′) = 0. This means that the expansion is
decelerating, so A(t) < 0. This is certainly possible, for:

ρ+ 3p = ρ(1 + 3w) > 0 ⇒ w > −1

3

We already said for ρ to go to decrease as a increased, w > −1, so this restriction on w doesn’t
conflict with our previous restriction, and everything is good so far. So, assuming w > −1/3,
eventually there will be a time t′ when H(t′) = 0, and since A(t) < 0 for all time, H(t) will
flip signs and become negative, causing the universe to collapse in on itself. Since A(t) is strictly
negative, the rate at which the universe collapses will accelerate, collapsing the universe back down
to its starting point: a(t) = 0. So:

The only geometry for a universe under Friedmann cosmology to collapse
back in on itself is that of a sphere. As long as w > −1, the universe has a
possibility of doing so. If w > −1/3, the universe will definitely collapse back
in on itself, and fall back to a(t) = 0.

But notice something: all of this analysis was for a single fluid, with a fixed w. What about
a physical universe, like ours, which has 3 different types of fluids, each with its own value of w?
Well, the analysis gets more complicated, obviously, but there’s still a lot to learn from a basic
overview of the Friedmann equations.
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The first thing we need to do is recognize that geometry plays a key role in the evolution of the
universe. Keeping this in mind, we’ll define a critical density ρc such that k = 0 in the Friedmann
equation for H2:

ρc ≡
3H2

8π
(36)

Note that since H2 is a function of time, so is ρc. The critical density gives us a really convenient
way to determine the geometry of any universe under Friedmann cosmology. At our current time
t = 0, we have a Hubble parameter of H0 and thus a critical density of ρc,0 = 3H2

0/8π. The actual
density at the current time, ρ0 then uniquely determines the geometry of the universe. We can
manipulate the Friedmann equation for H2 to see this (note that this will be defined at our current
time):

H2
0 =

8π

3
ρ0 −

k

a2
0

⇒ k

a2
0

=
8π

3

(
ρ0 −

3H2
0

8π

)
Thus, we have:

k

a2
0

=
8π

3
(ρ0 − ρc,0) (37)

If the current energy density of the universe, ρ0, is greater than the current critical density, ρc,0,
then the universe is spherical (k > 0); if ρ0 < ρc,0, then the universe is hyperbolic (k < 0); and if
ρ0 = ρc,0, then the universe is flat (k = 0).

So, clearly the energy density ρ (at any time) is critically important to understanding the
evolution of the universe, since it determines the geometry, and the geometry determines how the
expansion will accelerate or decelerate. Since we don’t have one type of fluid in our universe, but
three types, it’s natural to simple define the total energy density as:

ρ ≡ ρm + ρr + ρΛ (38)

where, once again, the subscript m is for matter, r is for radiation, and Λ is for dark energy.
Notice something else, though: the actual energy densities are irrelevant. Look back at equation

(37), and divide by the critical density ρc,0. This yields:

k

ρc,0a2
0

=
8π

3

(
ρ0

ρc,0
− 1

)
If we define a relative energy density:

Ω ≡ ρ

ρc
(39)

with analogous definitions for the individual fluids, and analogous definitions at the current time
t = 0, then the above equation becomes:

k

ρc,0a2
0

=
8π

3
(Ω0 − 1) =

8π

3
(Ωm,0 + Ωr,0 + ΩΛ,0 − 1) (40)

Since we know that ρc,0 is positive5, it’s not the (current) energy density ρ0 that determines k, but
the (current) relative energy density Ω0 that does. If we could measure Ω0, we would know exactly
what the geometry of the universe was, i.e. what k was, and then we could predict how a(t) would
change based on how Ω changes with time.

5Look back at equation (36); since H2 is always positive, ρc will always be positive.
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Before continuing, I am oversimplifying the analysis a bit, but this is how you learn cosmology:
you start with a super simplification (e.g. only one type of fluid), then a lesser simplification (e.g.
what we’re doing now), and then work your way up to the real thing. The main part of the analysis
that I’m completely ignoring is the fact that k is not a constant in time; the geometry of the
universe can absolutely change over time. This is as easy to see as looking as the equation we’ve
been using: since Ω is a function of time, then there is no reason to assume that Ω(t)− 1 will never
change sign6. It turns out that this isn’t very relevant to our universe, especially not at the level
we’re considering cosmology at, so we can continue despite this omission.

Getting back to it, it turns out that we can, actually, measure the energy content of the universe.
The Planck satellite has been able to measure it extremely precisely, to a value of (as of the 2013
results):

Ω0 = 1.0005± 0.0033 (41)

This is insanely close to 1; for all intents-and-purposes, the universe is flat. We can define the
relative density for any fluid i as:

Ωi ≡
8π

3H2
0

ρi =
8π

3H2
0

ρi,0a
−3(1+wi) (42)

where I used equation (15) for ρi,0 in the last equality. Though I didn’t mention it before, Ci,0
has the interpretation of the initial density of fluid i. This is because a0 is defined to be 1, so

ρi,0 = Ci,0a
−3(1+wi)
0 = Ci,0, giving it the meaning I just used for it. Thus, the relative density, as

function of scale-factor, can be expressed, with the appropriate values of wi, as:

Ω =
8π

3H2
0

(
ρi,0a

−3 + ρr,0a
−4 + ρΛ,0

)
Or, better yet, re-writing this in terms of the current relative densities Ωi,0:

Ω = Ωm,0a
−3 + Ωr,0a

−4 + ΩΛ,0 (43)

Now we’re prepared to discuss what happened to the different densities of the different fluids
as the universe was expanding from a(t) = 0. We can see that the fastest energy source to die off
is radiation, since it goes like a−4. As Ωr is dropping, both Ωm and ΩΛ are rising, because they
are relative quantities; Ωm rises slightly due simply to the drop in Ωr, despite ρm continuously
dropping as a−3, but ΩΛ rises due to the fact that ρΛ is a constant. Fairly quickly, Ωr → 0 for
all intents-and-purposes, so we ignore whatever effects radiation might have on the evolution of
the universe at present times. As time continues to pass, as long as a continues to grow (which
it will unless the universe is spherical; recall that our universe is flat), then the matter density is
eventually going to die off too, since ρm continuously decreases while ρΛ remains a constant. Thus,
at some point, Ωm → 0, and the only energy source left will be dark energy, i.e. Ω = ΩΛ.

Take a look at Figure 3, which has the actual initial conditions of our universe7. In the initial
universe (a short time after because of cosmic inflation, which we won’t worry about), Ωm and
Ωr were basically the same value, with ρr only slightly larger. However, since ρr drops off faster

6Note that only with a change in sign of k will the geometry change; this was the whole thing about the Robertson-
Walker being reparametrizable with a change in the scale of k, so that the geometry was only sensitive to the sign.

7In cosmology, we don’t compute things from the initial conditions at the beginning of the universe, and then move
forward in time; we start at our current time t = 0, and then work backwards through time to derive the conditions
at the start of the universe. But for our purposes, it’s better to think that someone was around at the start of the
universe to measure the relative densities Ωi, so that we could then predict how they would change from the start of
the universe to the present time, when they have a value of Ωi,0.
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than ρm, Ωm caught up to Ωr fairly quickly, and the universe transitioned from being radiation-
dominated (meaning the major contributor to Ω, or the effective equation of state weff , if you’d like)
to being matter-dominated. However, the matter density continued to drop, but the dark energy
density never did; it remained a constant. At some time, then, there was (or will be) a transition
from a matter-dominated universe to a dark energy-dominated universe. Current estimates put
this transition not too long ago, as you can see in Figure 3 (current time, measured since the big
bang, is on the order of 1010 years).

Figure 3: Time-evolution of energy densities. Image credit: Prof. Jim Brau, University of Oregon.

Why does it matter what energy source dominates the universe? Well, not worrying about k
changing sign on us, the type of matter that dominates the universe controls what the effective
value of w is going to be in the equation of state, some weff let’s say. This has huge implications
on how the scale factor is going to evolve, as we’ve discussed before. In our simple analysis, we
approached the evolution of the universe for a single type of energy source; well, that’s exactly the
same as we’re doing here. The early universe was dominated by radiation, so weff ≈ 1/3, and a(t)
would evolve like for a universe with only radiation. The majority of the time since the big bang
has been matter-dominated, though, so weff has been approximately 0 throughout this time. Now
that we’re transitioning, or have transitioned, into a dark energy-dominated universe, from now on
weff ≈ −1.

For both the radiation-dominated and matter-dominated universes, we see from the Friedmann
equation for A(t), given in equation (28), that:

A(t) = −4π

3
(ρ+ 3p) = −4π

3
ρ(1 + 3w) < 0

since w = 1/3, so 1 + 3w = 2 for a radiation-dominated universe, and w = 1, so 1 + 3w = 4 for
a matter-dominated universe. This means that for the majority of the time since the beginning
of the universe, the rate at which the universe has been expanding has been decreasing. This is
exactly what was depicted in Figure 2, but now we have a reason to expect this result.

But, once the universe transitions to dark energy-dominated, all hope of not expanding out to
infinity is lost. Not only will a dark energy-dominated universe continue to expand forever, but it
will continue to accelerate its expansion since w = −1 for dark energy, so 1 + 3w = −2, and thus
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A(t) is strictly positive. The moment our universe became dark energy-dominated, our fate has
been essentially sealed.

At what point should we expect the transition from matter-dominated to dark energy-dominated?
This can be answered by analyzing, once again, our Friedmann equation for A(t). Expanding both
ρ and p in terms of matter and dark energy terms (we can ignore radiation, since ρr long ago
dropped to practically zero), such that:

A(t) = −4π

3
(ρm + ρΛ + 3pm + 3pΛ)

Since pm = 0 and pΛ = −ρΛ, the above equation reduces to:

A(t) = −4π

3
(ρm − 2ρΛ) (44)

near the transition between matter-dominated and dark energy-dominated. We know that, along
with this transition, comes the change from a decelerating expansion to an accelerating expansion.
So the change itself should occur when A(t) is transition from negative to positive, i.e. when it’s
zero. Thus, the transition from a matter-dominated to a dark energy-dominated universe occurs
when:

ρΛ

ρm
=

1

2
(45)

The density of dark energy simply has to reach 1/2 the value of the matter density for the universe
to become dark energy-dominated; they don’t even have to be equal! With respect to this result,
Figure 3 is slightly off, but it’s still fine to illustrate the major points being made.

Figure 4: What the dynamics of our universe should be, based on observations of Ωm,0 and ΩΛ,0.
Image credit: Carroll (2004).

To wrap it up, I’ll simply present a figure that summarizes a lot of ideas discussed, but with the
added dimension that the geometry, i.e. k, can also change over time. Figure 48 above plots ΩΛ,0

vs. Ωm,0, and shows how the dynamics of our universe will change based on how the parameters
change. The diagonal line represents a constant line Ω0 = 1, which guarantees a flat universe (i.e.

8Taken from Carroll (2004).
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k = 0); any diagonal line underneath will be a line of constant Ω0 < 1, so the universe will be
hyperbolic (i.e. k < 0); and any diagonal line above will be a line of constant Ω0 > 1, so the
universe would be spherical (i.e. k > 0). Note that whenever I say a “diagonal line,” I mean one
with a 45o slope like the one drawn in the Figure.

Current Planck observations (from the 2015 data release) put the relative densities at:

ΩΛ,0 = 0.685± 0.013

Ωm,0 = 0.315± 0.013
(46)

These sum to exactly 1, with an error of±0.013. The trouble is that, along with almost everything in
cosmology, there are a few different ways to measure these densities, and the physicists community
isn’t convinced about which is the most accurate. This is why Figure 4 has a bubble around
ΩΛ,0 = 0.7 and Ωm,0 = 0.3; there are differing observations9 that provide differing values, but they
all have logical validity, and no one has been able to rule out a particular method for determining
the values. Until that time comes, we’ll be perpetually living in this bubble, unsure about the exact
geometry of the universe or its exact fate.

A Equations of State for Radiation and Matter

We know from classical kinetic theory that the pressure on a surface ps due to a beam of particles
at a speed v with a density n arriving at an angle of θ relative to the normal of the surface is

ps = nγmv2 cos2 θ (47)

where I have added a factor of γ to make the equation relativistically correct. If want to find the
pressure on the inner surface of a sphere due to an isotropic distribution of particle velocities, we
simply need to average cos2 θ over the unit sphere:

〈cos2 θ〉 =

∫
cos2 θdΩ∫
dΩ

=
2π
∫ 1
−1 cos2 θd(cos θ)

4π
=

1

2

(
1

3
x3

)∣∣∣∣1
−1

=
1

3

So, the pressure exerted by the gas of particles with an isotropic velocity distribution is

p =
1

3
nγmv2 (48)

Now, we know that the relativistic energy of a single particle is going to be

E =
√
p2 +m2 =

√
γ2m2v2 +m2 = m

√
γ2v2 + 1

Note that γ2v2 + 1 = γ2. If we multiply the above equation by the particle density n, we get the
energy density:

ρ = nm
√
γ2 = nγm (49)

So, our equation for the pressure becomes

p =
1

3
ρv2 (50)

9The three major ones that contribute to this are CMB observations, like those of Planck, supernovae type Ia
observations, and galactic cluster observations. Hopefully one day we’ll be able to rule on which of the three is the
best method for measuring the densities, or at least maybe get all three to agree to greater precision.
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For ultra-relativistic particles, like photons, v → 1 and

pr =
1

3
ρ (51)

where the r is for radiation, which is what photons are typically referred to in cosmology. For
non-relativistic particles, like a cold gas, v → 0 and

pm = 0 (52)
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