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Maximally Symmetric Spaces

Douglas H. Laurence

Department of Physical Sciences, Broward College, Davie, FL 33314

Abstract: These notes follow Weinberg’s derivation of the Riemann Curvature tensor for
a maximally symmetric space presented in "Gravitation and Cosmology," with some details
filled in. Weinberg is particularly difficult to read, so writing down these notes and filling in
the gap really helped me understand his derivation, which is the most rigorous and thorough
derivation in any of the popular general relativity or cosmology textbooks. These notes start
by presenting Killing vectors from scratch, and then apply the most restrictions on can on
the form of the Riemann curvature tensor for a maximally symmetric space. Specifically,
the maximally symmetric space considered is a homogeneous and isotropic space, which is
obviously important when studying cosmology.
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1 Isometries of the Metric

A metric gµν(x) is form-invariant under some coordinate transformation x 7→ x′ when the
transformed metric g′µν(x′) is the same function of its argument x′ as the original metric gµν
was of its argument x. The metric transformation is defined by:

gµν(x) =
∂x′ρ

∂xµ
∂x′σ

∂xν
g′ρσ(x′) (1.1)

The above definition of a form-invariant metric is equivalent to the statement:

g′ρσ(x′) = gρσ(x′) (1.2)

i.e. that the form of the metric is invariant under the transformation; the function itself
remains the same. So, equation (1.1) becomes:

gµν(x) =
∂x′ρ

∂xµ
∂x′σ

∂xν
gρσ(x′) (1.3)

What we want to consider are isometries, which are the coordinate transformations x 7→
x′ that leave a metric form-invariant. We’ll restrict ourselves to infinitesimal isometries, as all
the interesting physics is going to be related to infinitesimal transformations. An infinitesimal
coordinate transformation can be written as:

xµ 7→ x′µ = xµ + εξµ (ε� 1) (1.4)

We can plug this transformation into equation (1.3) and keep terms up to order ε. First,
the partial derivatives will be:

∂x′ρ

∂xµ
∂x′σ

∂xν
=

(
∂xρ

∂xµ
+ ε

∂ξρ

∂xµ

)(
∂xσ

∂xν
+ ε

∂ξσ

∂xν

)
= δρµδ

σ
ν + εδρµ

∂ξσ

∂xν
+ εδσν

∂ξρ

∂xµ
+O(ε2)

Next, taking the Taylor expansion of gρσ(x′) to order ε:
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gρσ(x′) = gρσ(x) + εξα
∂gρσ(x)

∂xα
+O(ε2)

Plugging these two results into equation (1.3), we see that:

gµν(x) =

(
δρµδ

σ
ν + εδρµ

∂ξσ

∂xν
+ εδσν

∂ξρ

∂xµ

)(
gρσ(x) + εξα

∂gρσ(x)

∂xα

)

= δρµδ
σ
ν gρσ(x) + εδρµ

∂ξσ

∂xν
gρσ(x) + εδσν

∂ξρ

∂xµ
gρσ(x) + δρµδ

σ
ν εξ

α∂gρσ(x)

∂xα

= gµν(x) + ε
∂ξσ

∂xν
gµσ(x) + ε

∂ξρ

∂xµ
gρν(x) + εξα

∂gµν(x)

∂xα

Thus, to order ε, the condition for form-invariance of the metric for an infinitesimal
isometry is equivalent to the following condition on the metric:

∂ξσ

∂xν
gµσ(x) +

∂ξρ

∂xµ
gρν(x) + ξα

∂gµν(x)

∂xα
= 0 (1.5)

From now on, I’m going to drop the explicit dependence on x, since all of the metrics are
being evaluated at the same position, so there is no longer a need to be explicit.

The next step is to notice that:

∂

∂xν
(ξσgµσ) =

∂ξσ

∂xν
gµσ + ξσ

∂gµσ
∂xν

So equation (1.5) becomes:

∂

∂xν
(ξσgµσ)− ξσ ∂gµσ

∂xν
+

∂

∂xµ
(ξρgρν)− ξρ∂gρν

∂xµ
+ ξα

∂gµν
∂xα

= 0 (1.6)

There are a couple of things to note about the above equation. There are two non-dummy
indices: µ and ν. Besides those, all indices are dummy indices. In the second term, I want to
replace σ with α, and in the fourth term, ρ with α. Another thing to notice is that:

ξσgµσ = ξµ

So, equation (1.6) becomes:

∂ξµ
∂xν

+
∂ξν
∂xµ

+ ξα
(
∂gµν
∂xα

− ∂gµα
∂xν

− ∂gαν
∂xµ

)
= 0 (1.7)

Recalling the definition of the Christoffel symbols of the first kind:

Γαµν =
1

2

(
∂gµα
∂xν

+
∂gαν
∂xµ

− ∂gµν
∂xα

)
equation (1.7) becomes:
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∂ξµ
∂xν

+
∂ξν
∂xµ

− 2ξαΓαµν = 0 (1.8)

Noting that ξµ = xλg
µλ and that the Christoffel symbol of the second kind is defined as:

Γλµν = gλαΓαµν

equation (1.8) becomes:

∂ξµ
∂xν

+
∂ξν
∂xµ

− 2ξλΓλµν = 0 (1.9)

The factor of 2 in front of the Christoffel term allows that term to be split, one for each
derivative of ξ, which turns those ordinary derivatives into covariant derivatives. Thus, we
arrive at the equation:

∇νξµ +∇µξν = 0 (1.10)

2 Killing Vectors

The equation derived at the end of the last section is known as the Killing equation, and the
vector fields ξ that satisfy it are known as Killing vector fields; they define the particular
isometries of the metric that one might be interested in. For instance, we could construct a
killing vector to describe a translational isometry or a rotational isometry.

What Killing vectors allow us to do is reduce the problem of finding all symmetries of a
particular metric down to simply finding the corresponding Killing vectors. Sometimes this
problem is very easy, for instance if a metric has an explicit independence of a coordinate. For
example, the Minkowski metric is invariant under a translation of any of its four coordinates,
so there would be one Killing vector per coordinate (at least).

Note that a linear combination of Killing vectors is also a Killing vector, since it will solve
the Killing equation like any linear combination of solutions to any differential equation. So,
technically, it’s the spanning set of Killing vectors is actually what describes the isometries of
a particular metric.

The Killing equation is actually more useful than it appear at first sight; it will allow
us to define a Killing vector at any point x if we only know the Killing vector at a specific
point X and its covariant derivative at that point X. It turns out that we can show that
second-order covariant derivatives of Killing vectors are not unique, but are proportional to
the Killing vector itself, so all second- and higher-order covariant derivatives of the Killing
vector can be expressed in terms of just the Killing vector itself and its first-order covariant
derivative. Thus a Taylor expansion for a Killing vector at x can be expressed entirely in
terms of the Killing vector at X and its first-order covariant derivative at X.

To show this, we need to begin with an identity for second-order covariant derivatives
(a la Weinberg, "Gravitation and Cosmology," (13.1.6) or Dirac, "The General Theory of
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Relativity," (11.2)). From now on, I will use the notation that a covariant derivative is given
by a subscript with a semi-colon preceding it. The relevant identity is:

ξµ;ν;ρ − ξµ;ρ;ν = −Rλµνρξλ (2.1)

Combining this with the first Bianchi identity of the Riemann curvature tensor:

Rλµνρ +Rλνρµ +Rλρµν = 0

⇒ Rλµνρξλ +Rλνρµξλ +Rλρµνξλ = 0

⇒ ξµ;ν;ρ − ξµ;ρ;ν + ξν;ρ;µ − ξν;µ;ρ + ξρ;µ;ν − ξρ;ν;µ = 0

Now we want to group the above Killing vector derivatives by the second-derivative, i.e.
ξµ;ν;ρ and −ξν;µ;ρ are to be grouped:

(ξµ;ν;ρ − ξν;µ;ρ) + (ξν;ρ;µ − ξρ;ν;µ) + (ξρ;µ;ν − ξµ;ρ;ν) = 0 (2.2)

If we take the Killing equation and take a second covariant derivative:

ξµ;ν + ξν;µ = 0 ⇒ ξµ;ν;ρ + ξν;µ;ρ = 0

we can substitute these modified Killing equations into equaton (2.2), yielding:

2ξµ;ν;ρ − 2ξρ;ν;µ − 2ξµ;ρ;ν = 0

or:
ξµ;ν;ρ − ξµ;ρ;ν = ξρ;ν;µ (2.3)

Notice above that I chose a very particular set of signs (first term positive, second and
third terms negative). This is because, as you can see in the equation immediately above,
this gives the term ξµ;ν;ρ− ξµ;ρ;ν , which we have our general second-order covariant derivative
identity for. The sign of the third Killing vector derivative isn’t important, but the signs of
the first two are.

Plugging this result into equation (2.1), we arrive at:

ξρ;ν;µ = −Rλµνρξλ (2.4)

Thus, the second-order covariant derivative of a Killing vector depends on the Killing vector
itself! This is a direct consequence of the Killing equation, because aside from that, we used
an identity that is satisfied by any vector. Using the above equation, we can construct higher-
order covariant derivatives in terms of the Killing vector itself and its first-order covariant
derivative, allowing us to construct the Taylor expansion for a Killing vector at any point x
knowing only the Killing vector at some point X and its first-order covariant derivative at
that same point X.
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So, any Killing vector can be written as the Taylor expansion:

ξµ(x) = Aλµ(x;X)ξλ(X) +Bλν
µ (x;X)ξλ;ν(X) (2.5)

where the functions A and B contain all the higher-order terms in the Taylor expansion that,
through the relationship between the second-order derivative and the Killing vector itself,
reduce to either the Killing vector or the first-order covariant derivative of the Killing vector.
The functions A and B should, in general, depend on the metric and on the choice of point
X, but should not depend on the initial value of the Killing vector ξλ(X) or its derivative
ξλ;ν(X), so are the same functions for any Killing vector.

We could broaden the above equation to allow for a set of Killing vectors {ξ(n)}, in which
case equation (2.5) be:

ξ(n)µ (x) = Aλµ(x;X)ξ
(n)
λ (X) +Bλν

µ (x;X)ξ
(n)
λ;ν(X) (2.6)

While the initial values of the Killing vector an its derivative will change with each individual
Killing vector considered, the functions A and B will not, because they are independent of
these initial values. Note that to avoid confusion, I indexed each individual Killing vector
with (n) instead of a bare n, to avoid assuming that n is an index and the assumption that
ξnµ is a tensor quantity.

Now that we can describe all Killing vectors ξ(n)µ (x) based on their individual initial
conditions, we need to consider only the linearly-independent Killing vectors so we can form
the spanning set of Killing vectors which, as mentioned, actually describes the isometries of
the metric. As always, a set of vectors {ξ(n)µ } is linearly-inependent if∑

n

cnξ
(n)
µ (x) = 0

if and only if the constant coefficients cn are each independently 0.

3 Maximally Symmetric Spaces

The question is now: "What is the maximum number of linearly-independent Killing vectors
one can have in an N -dimensional space?" Looking back at the Taylor expansion for ξ(n)µ (x),
any Killing vector is defined by its initial conditions ξ(n)λ (X) and ξ(n)λ;ν(X). In an N -dimensional

space, the Killing vector ξ(n)λ (X) has N independent components. Because of the Killing
equation, the first-order covariant derivative of a Killing vector ξ(n)λ;ν(X) is anti-symmetric
about its indices λ and ν, meaning that in N -dimensions it has N(N − 1)/2 independent
components. So a Killing vector ξ(n)µ (x) is defined by

N +
N(N − 1)

2
=
N(N + 1)

2

independent components.
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So, if we take a set of Killing vectors {ξ(n)µ }, the initial values ξ(n)λ (X) and ξ(n)λ;ν(X) should
be thought of as the components of vectors in an N(N + 1)/2-dimensional vector space. By
definition, a vector space in d-dimensional because it has, at most, d linearly-independent
vectors, so the maximum number of linearly-independent Killing vectors is N(N + 1)/2. A
space that has N(N+1)/2 Killing vectors for its metric is known as amaximally symmetric
space.

The study of maximally symmetric spaces is particularly important in cosmology, specifi-
cally in the study of homogeneous and isotropic spaces. A space is homogeneous if for
any two points p, q in the space, there exists an isometry of the metric that takes p to q, i.e.
the Killing vector ξλ must be an arbitrary value. If at every point p in a space, we define u to
be a time-like tangent vector, and s1 and s2 to be orthogonal space-like tangent vectors, and
there exists an isometry of the metric such that p and u are unchanged, but s1 is rotated into
s2, then the space is isotropic at every point. This requires that ξλ = 0, so as not to translate
the point, but the derivative ξλ;ν must be an arbitrary matrix (which is anti-symmetric, due
to the Killing equation). A space which is homogeneous and isotropic at one point is isotropic
at every point, so these spaces are typically referred to simply as homogeneous and isotropic
spaces.

For an N -dimensional space, it is clear that the homogeneity requirement defines N
translational isometries. Further, there will be N different time-like vectors about which
to rotate in an isotropic space, so that leaves N − 1 space-like vectors to physically rotate
(e.g. rotating s1). To avoid double counting, there are N(N − 1)/2 independent isometric
rotations in an isotropic space. So, a space which is both homogeneous and isotropic must
have N(N + 1)/2 isometries, and is therefore maximally symmetric.

In order for a metric to admit the maximal number of Killing vectors depends on how
many Killing vectors can be constructed out of their initial data points using a Taylor expan-
sion, which we should recall is only possible in the form we’ve considered if equation (2.4) is
integrable.

We can borrow another covariant derivative identity (a la Dirac (13.1)):

ξρ;ν;µ;σ − ξρ;ν;σ;µ = −Rλρµσξλ;ν −Rλνµσξρ;λ (3.1)

Taking the covariant derivative of (2.4), we see that:

ξρ;ν;µ;σ = −Rλµνρ;σξλ −Rλµνρξλ;σ

Likewise, by swapping indices in equation (2.4) and taking a covariant derivative, as we did
above, we have:

ξρ;ν;σ;µ = −Rλσνρ;µξλ −Rλσνρξλ;µ
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Plugging these into equation (3.1):

ξρ;ν;µ;σ − ξρ;ν;σ;µ = −Rλρµσξλ;ν −Rλνµσξρ;λ

⇒ (−Rλµνρ;σξλ −Rλµνρξλ;σ)− (−Rλσνρ;µξλ −Rλσνρξλ;µ) = −Rλρµσξλ;ν −Rλνµσξρ;λ

⇒−Rλµνρξλ;σ +Rλσνρξλ;µ + (Rλσνρ;µ −Rλµνρ;σ)ξλ = −Rλρµσξλ;ν −Rλνµσξρ;λ

In the above equation, we can group by the Killing vector ξλ and by it derivative. Of
the four terms that are derivatives, three of them are of the form ξλ;j , where j is an arbitrary
index. The one outlier is the term ξρ;λ, but due to the Killing equation, this is equal to −ξλ;ρ.
So the above equation becomes:

Rλµνρξλ;σ −Rλσνρξλ;µ −Rλρµσξλ;ν +Rλνµσξλ;ρ = (Rλσνρ;µ −Rλµνρ;σ)ξλ

A ξλ;κ can be factored from each term on the left-hand-side by inserting an appropriate
Kronecker-delta in each term, causing us to arrive at:

(Rλµνρδ
κ
σ −Rλσνρδκµ −Rλρµσδκν +Rλνµσδ

κ
ρ )ξλ;κ = (Rλσνρ;µ −Rλµνρ;σ)ξλ (3.2)

This is yet another requirement for Killing vectors, but we have yet to tie it into maximally
symmetric spaces. We know that in a maximally symmetric space, we can find Killing vectors
for which ξλ(x) = 0 and ξλ;κ(x) is an arbitrary, anti-symmetric matrix (from the condition
of isotropy). This means that the left-hand-side of the above equation must be identically
equal to zero. A sure-fire way to ensure this is to require that the entire coefficient of ξλ;κ
remain unchanged under an exchange of λ and κ. Since the derivative of the Killing vector
is antisymmetric, if the coefficient remains the same under a symmetry operation, it must be
zero, satisfying the right-hand-side of the above equation when ξλ(x) = 0. Thus:

Rλµνρδ
κ
σ −Rλσνρδκµ −Rλρµσδκν +Rλνµσδ

κ
ρ = Rκµνρδ

λ
σ −Rκσνρδλµ −Rκρµσδλν +Rκνµσδ

λ
ρ (3.3)

The above only considers Killing vectors for an isotropic space. For a homogeneous space,
we know there must also be Killing vectors which are arbitrary. Keeping the above requirement
for the isotropic Killing vectors means that the right-hand-side of equation (3.2) identically
equal to zero as well, so it must be true that:

Rλσνρ;µ = Rλµνρ;σ (3.4)

With the previous two conditions satisfied, one for isotropy and one for homogeneity, we
guaranteed that our space is homogeneous and isotropic, and therefore admits N(N + 1)/2

Killing vectors and is thus maximally symmetric. What we want to do now is use the above
results to determine what the Riemann curvature tensor should be for a maximally symmetric
space. Taking equation (3.3), we want to contract the κ and σ indices:
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Rλµνρδ
σ
σ −Rλσνρδσµ −Rλρµσδσν +Rλνµσδ

σ
ρ = Rσµνρδ

λ
σ −Rσσνρδλµ −Rσρµσδλν +Rσνµσδ

λ
ρ

The sum of δσσ is just the dimensionality of the space, which we will assume is N . Note
that because of the anti-symmetry conditions of the Riemann curvature tensor, the sum Rσσνρ
equals 0, and that the sum Rσρµσ is, by definition, the Ricci tensor Rρµ. So, the above equation
reduces to:

NRλµνρ −Rλµνρ −Rλρµν +Rλνµρ = Rλµνρ −Rρµδλν +Rνµδ
λ
ρ (3.5)

Now we want to apply the first Bianchi identity to the second, third, and fourth terms on
the left-hand-side, which states that:

Rλµνρ +Rλρµν +Rλνρµ = 0

Due to the antisymmetry of the Riemann curvature tensor, the third term is equal to Rλνρµ =

−Rλνµρ, and thus we see that the above Bianchi identity means that the three terms identified
previously in equation (3.5) sum to zero. So, we have, after grouping the factors of Rλµνρ on
the left-hand-side of the equation:

(N − 1)Rλµνρ = −Rρµδλν +Rνµδ
λ
ρ

And, if we multiply both sides by gκλ and sum, we can lower the indices of all the tensors:

(N − 1)Rκµνρ = −Rρµgκν +Rνµgκρ (3.6)

Since the Riemann curvature tensor on the left-hand-side must by anti-symmetric about
κ and µ, if we were to swap those indices on the right-hand-side of the equation, we’d pick up
a negative sign due to this antisymmetry, so:

−Rρµgκν +Rνµgκρ = +Rρκgµν −Rνκgµρ

Multiplying by gκρ and summing yields:

−Rρµ gκνgκρ︸ ︷︷ ︸
δρν

+Rνµ gκρg
κρ︸ ︷︷ ︸

N

= Rρκg
κρ︸ ︷︷ ︸

Rρ
ρ

gµν −Rνκ gµρgκρ︸ ︷︷ ︸
δκµ

⇒ −Rνµ +NRνµ = Rgµν −Rνµ

where the Ricci scalar is defined as R = Rρρ. Since the Ricci curvature tensor is symmetric,
we can also say Rνµ = Rµν for cohesiveness. Thus, our result is:

Rµν =
R

N
gµν (3.7)

Plugging this result back into equation (3.6), we get:
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(N − 1)Rκµνρ = −Rρµgκν +Rνµgκρ = −R
N
gρµgκν +

R

N
gµνgκρ =

R

N
(gµνgκρ − gρµgκν)

Thus, we arrive at the Riemann curvature tensor that describes a maximally symmetric space:

Rκµνρ =
R

N(N − 1)
(gµνgκρ − gρµgκν) (3.8)

We set out to apply as many restrictions on the form of the Riemann curvature tensor as
we could for a maximally symmetric space, and we’ve done just that; there’s nothing else we
can do to the above equation given the Killing vectors.

However, there is more to learn about the Ricci curvature tensor and the Ricci scalar.
Using a well-known identity (a la Weinberg (6.8.4) or Dirac (14.3)):(

Rµν − 1

2
gµνR

)
;µ

= 0

we can multiply a factor of gνρ into the covariant derivative, resulting in:(
Rµρ −

1

2
δµρR

)
;µ

= 0

Using equation (3.7), this means that:

Rµρ =
R

N
δµρ

and so the above equation becomes:(
1

N
δµρR−

1

2
gµρR

)
;µ

= 0

or: (
1

N
− 1

2

)
R;µ = 0

Since R is a scalar, the covariant derivative is equal to the typical gradient, so the above
equation is equivalent to: (

1

N
− 1

2

)
∂R

∂xµ
= 0 (3.9)

The result of this is that, for a space with dimension N > 2, the Ricci scalar R is a constant;
that is, maximally symmetric spaces (with dimension greater than 2) have a constant Ricci
curvature.

In equation (3.8), we had a term R/N(N−1). Because this is cumbersome, it is convenient
to introduce a different curvature scalar K such that:
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K =
R

N(N − 1)

This means that equation (3.8) can be re-written as:

Rκµνρ = K(gµνgκρ − gρµgκν) (3.10)

where K is a constant since R is a constant.
There is a very important theorem that Weinberg proves, but I won’t prove here, which

I will call the theorem of metric uniqueness. From Weinberg,

Given two maximally symmetric metrics with the same K and the same signature,
it will always be possible to find a coordinate transformation that carries one metric
into another.

i.e. that a metric is uniquely defined, up to a coordinate transformation, for a given curvature
K and signature.

The last thing to do now is to take all that we have gathered about maximally symmetric
spaces, which bear in mind came entirely from the Killing equation and from the requirements
on the Killing vectors that homogeneity and isotropy demand, we can construct the metrics
for any maximally symmetric space. It turns out that it won’t be necessary to consider
any arbitrary curvature K, because the curvature can easily be rescaled in the metric; it
will only be necessary to consider spaces of constant positive curvature, zero curvature, and
constant negative curvature. Spaces of constant positive curvature are spherical, spaces of
zero curvature are flat, and spaces of constant negative curvature are hyperbolic, so these are
the only three spaces (with a regular topology; nothing strange has been considered here) that
are maximally symmetric. The end result of this last derivation will be the Robertson-Walker
metric, which is the metric used in cosmology.

Note that all of the work up to this point has, essentially, been to rigorously derive the
single equation for the Riemann curvature tensor for a maximally symmetric space. This is
not the most common way, by any means; in fact, it is incredibly uncommon, and Weinberg
is the only (popular) reference that I found with such a detailed derivation. Carroll has a
much more popular derivation for the same equation, which uses a less rigorous approach to
exploiting the symmetry, but arrives at the same result in almost no time at all.

The basic argument is this: if space is homogeneous and isotropic, then your Riemann
curvature tensor should be invariant under any (local) Lorentz transformation (i.e. a local
change of basis should leave the Riemann curvature tensor invariant). There are only three
unique tensors that have this property, though: the metric tensor, the Kronecker-delta, and
the Levi-Civita tensor. This means that the Riemann curvature tensor must be constructed
out of some linear combination of these three tensors, while still maintaining the appropriate
anti-symmetry relations. By brute force, it is possible to show that there is only one such
combination:
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Rκµνρ ∝ gµνgκρ − gρµgκν

Setting the proportionality constant equal to some c and contracting over all indices, the left-
hand-side becomes R, the Ricci curvature, and the right-hand-side becomes cN(N −1), so we
would arrive at the same equation for the Riemann curvature tensor:

Rκµνρ =
R

N(N − 1)
(gµνgκρ − gρµgκν) = K(gµνgκρ − gρµgκν)
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